If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x-43=0
a = 2; b = 1; c = -43;
Δ = b2-4ac
Δ = 12-4·2·(-43)
Δ = 345
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{345}}{2*2}=\frac{-1-\sqrt{345}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{345}}{2*2}=\frac{-1+\sqrt{345}}{4} $
| 18-3/2x=10-2/3x | | 2x+1=3x–5 | | 5-2a+4+a=2 | | ^(4)-64x=0 | | 3(x-5+2x)=30 | | 1p-223=p+20 | | 4x+12=2x–2 | | x+984=1362 | | 276+x=561 | | 375+x+239=1167 | | x+397=636 | | 241+945+x=1583 | | 375+x=616 | | 2=(2000000-x)/500000 | | 453+x=1157 | | 2=2000000-x/500000 | | x+560=975 | | x+389=599 | | x+437=1180 | | 227+x=983 | | 577+x=921 | | x+524+807=1632 | | 685+x=1492 | | 911+x=1435 | | x+911+685=2398 | | j2-8j+10=0 | | 8x=11=15 | | 11x=3=36 | | 5x=4+8x+8 | | 4x=3=51 | | 10x-(5x+4)/3=7 | | 13=x=27 |